Sabtu, 11 Februari 2012

Sistem Koloid

Jenis koloid yang mencemari udara adalah koloid aerosol padat (berupa butiran/partikel padatan terdispersi dalam gas/udara). Pencemaran ini berasal dan asap kendaraan bermotor, industri, debu jalanan yang ditiup angin. Pencemaran ini dapat mengganggu daya pandang (visibilitas), gangguan kesehatan (mengganggu pernapasan). Selain itu juga dapat memengaruhi cuaca, dapat menimbulkan seringnya hujan, karena butiran ini merupakan salah satu komponen pembentuk awan.
Jenis koloid yang mencemari air adalah limbah yang berasal dari industri, seperti logam berat (misalnya logam Pb dan Hg), dan limbah yang berasal dan pemukiman, seperti limbah detergen.
Sedangkan jenis koloid yang mencemari tanah adalah limbah pertanian seperti pestisida dan pupuk.
Proses Penjernihan Air
Air dapat dijernihkan berdasarkan sifat-sifat koloid, yaitu koagulasi dan absorpsi. Seperti yang telah dijelaskan sebelumnya, proses koagulasi terjadi akibat tidak stabilnya sistem koloid; yang disebabkan penambahan zat elektrolit ke dalam sistem koloid tersebut. Sedangkan absorpsi adalah proses ketika permukaan koloid menyertakan zat lain. Air sungai atau air sumur yang keruh mungkin mengandung lumpur (sol tanah liat), zat-zat warna, detergen, pestisida, dan lain-lain.
Zat koagulasi yang ditambahkan pada proses penjernihan air adalah tawas, K 2 SO 4 A1 2 (SO 4 )3 . Zat A1 2 (SO 4 ) 3 dalam air akan terhidrolisis membentuk koloid A1(OH) 3 . Koloid Al(OH) 3yang terbentuk akan mengabsorpsi, menggumpalkan, dan mengendapkan kotoran-kotoran dalam air keruh. Ion Al 3+ dari koloid Al(OH) 3 akan menggumpalkan koloid tanah liat yang bermuatan negatif. Di samping itu, koloid Al(OH) 3 akan mengabsorpsi zat-zat seperti zat-zat warna, detergen, pestisida, dan lain-lain yang terdispersi dalam air keruh tersebut.

Sifat –Sifat Koloid

1. Efek Tyndall
Cara yang paling mudah untuk membedakan suatu campuran merupakan larutan, koloid, atau suspensi adalah menggunakan sifat efek Tyndall . Jika seberkas cahaya dilewatkan melalui suatu sistem koloid, maka berkas cahaya tersebut kelihatan dengan jelas. Hal itu disebabkan penghamburan cahaya oleh partikel-partikel koloid. Gejala seperti itulah yang disebut efek Tyndall koloid.

Gambar 1. Perbedaan (a)larutan, (b)koloid dan (c)suspensi dengan menggunakanefek tyndal
Istilah efek Tyndall didasarkan pada nama penemunya, yaitu John Tyndall (1820-1893) seorang ahli fisika Inggris. John Tyndall berhasil menerangkan bahwa langit berwarna biru disebabkan karena penghamburan cahaya pada daerah panjang gelombang biru oleh partikel-partikel oksigen dan nitrogen di udara. Berbeda jika berkas cahaya dilewatkan melalui larutan, nyatanya berkas cahaya seluruhnya dilewatkan. Akan tetapi, jika berkas cahaya tersebut dilewatkan melalui suspensi, maka berkas cahaya tersebut seluruhnya tertahan dalam suspensi tersebut.

2. Gerak Brown
Dengan menggunakan mikroskop ultra (mikroskop optik yang digunakan untuk melihat partikel yang sangat kecil) partikel-partikel koloid tampak bergerak terus-menerus, gerakannya patah-patah (zig-zag), dan arahnya tidak menentu. Gerak sembarang seperti ini disebut gerak Brown. Gerak Brown ditemukan oleh seorang ahli biologi berkebangsaan Inggris, Robert Brown ( 1773 – 1858), pada tahun 1827.
Gerak Brown terjadi akibat adanya tumbukan yang tidak seimbang antara partikel-partikel koloid dengan molekul-molekul pendispersinya. Gerak Brown akan makin cepat, jika partikel-partikel koloid makin kecil. Gerak Brown adalah bukti dari teori kinetik molekul.
Gambar 2. Gerak Brown

3. Elektroforesis
Koloid ada yang netral dan ada yang bermuatan listrik. Bagaimana mengetahui suatu koloid bermuatan listrik atau tidak? Dan mengapa koloid bermuatan listrik?
Jika partikel-partikel koloid dapat bergerak dalam medan listrik, berarti partikel koloid tersebut bermuatan listrik. Jika sepasang elektrode dimasukkan ke dalam sistem koloid, partikel koloid yang bermuaran positif akan menuju elektrode negatif (katode) dan partikel koloid yang bermuatan negatif akan menuju elektrode positif (anode). Pergerakan partikel-partikel koloid dalam medan listrik ke masing-masing elektrode disebut elektroforesis . Dari penjelasan di atas dapat disimpulkan bahwa elektroforesis dapat digunakan untuk menentukan jenis muatan koloid.
 
Gambar 3. (a) Sel elektroforesis sederhana dan (b) pemaparan pengendap Cottrell
Pada sel elektroforesis, partikel-partikel koloid akan dinetralkan muatannya dan digumpalkan di bawah masing-rnasing elektrode. Di samping untuk menentukan muatan suatu partikel koloid, elektroforesis digunakan pula dalam industri, misalnya pembuatan sarung tangan dengan karet. Pada pembuatan sarung tangan ini, getah karet diendapkan pada cetakan berbentuk tangan secara elektroforesis. Elektroforesis juga digunakan untuk mengurangi pencemaran udara yang dikeluarkan melalui cerobong asap pabrik. Metode ini pertama-tama dikembangkan oleh Frederick Cottrell (1877 - 1948) dari Amerika Serikat. Metode ini dikenal dengan metode Cottrell . Cerobong asap pabrik dilengkapi dengan suatu pengendap listrik (pengendap Cottrell), berupa lempengan logam yang diberi muatan listrik yang akan menggumpalkan partikel-partikel koloid dalam asap buangan.

4. Absorpsi
Suatu partikel koloid akan bermuatan listrik apabila terjadi penyerapan ion pada permukaan partikel koloid tersebut. Contohnya, koloid Fe(OH) 3 dalam air akan menyerap ion H + sehingga bermuatan positif, sedangkan koloid As 2 S 3 akan menyerap ion-ion negatif. Kita tahu bahwa peristiwa ketika permukaan suatu zat dapat menyerap zat lain disebut absorpsi . Berbeda dengan absorpsi pada umumnya, penyerapan yang hanya sampai ke bagian dalam di bawah permukaan suatu zat, suatu koloid mempunyai kemampuan mengabsorpsi ion-ion. Hal itu terjadi karena koloid tersebut mempunyai permukaan yang sangat luas. Sifat absorpsi partikel-partikel koloid ini dapat dimanfaatkan, antara lain sebagai berikut.
a. Pemutihan gula pasir
Gula pasir yang masih kotor (berwarna coklat) diputihkan dengan cara absorpsi. Gula yang masih kotor dilarutkan dalam air panas, lalu dialirkan melalui sistem koloid, berupa mineral halus berpori atau arang tulang. Kotoran gula akan diabsorpsi oleh mineral halus berpori atau arang tulang sehingga diperoleh gula berwarna putih.
b. Pewarnaan serat wol, kapas, atau sutera
Serat yang akan diwarnai dicampurkan dengan garam A1 2 (SO 4 ) 3, lalu dicelupkan dalam larutan zat warna. Koloid Al(OH) 3 yang terbentuk, karena A1 2 (SO 4 ) 3 terhidrolisis, akan mengabsorpsi zat warna.
c. Penjernihan air
Air keruh dapat dijernihkan dengan menggunakan tawas (K 2 SO 4 A1 2 (SO 4 ) 3 ) yang ditambahkan ke dalam air keruh. Koloid Al(OH) 3 yang terbentuk akan mengabsorpsi, menggumpalkan, dan mengendapkan kotoran-kotoran dalam air.
d. Obat
Serbuk karbon (norit), yang dibuat dalam bentuk pil atau tablet, apabila diminum dapat menyembuhkan sakit perut dengan cara absorpsi. Dalam usus, norit dengan air akan membentuk sistem koloid yang mampu mengabsorpsi dan membunuh bakteri-bakteri berbahaya yang menyebabkan sakit perut.
e. Alat Pembersih (sabun)
Membersihkan benda-benda dengan mencuci memakai sabun didasarkan pada prinsip absorpsi. Buih sabun mempunyai permukaan yang luas sehingga mampu mengemulsikan kotoran yang melekat pada benda yang dicuci.
f. Koloid tanah liat mampu menyerap koloid humus
Koloid tanah dapat mengabsorpsi koloid humus yang diperlukan tumbuh-tumbuhan sehingga tidak terbawa oleh air hujan.
5. Koagulasi
Koagulasi adalah proses penggumpalan partikel-partikel koloid. Proses koagulasi ini terjadi akibat tidak stabilnya sistem koloid. Sistem koloid stabil bila koloid tersebut bermuatan positif atau bermuatan negatif. Jika muatan pada sistem koloid tersebut dilucuti dengan cara menetralkan muatannya, maka koloid tersebut menjadi tidak stabil lalu terkoagulasi (menggumpal). Koagulasi dengan cara menetralkan muatan koloid dapat dilakukan dengan dua cara, yaitu sebagai berikut.
1) Penambahan Zat Elektrolit
Jika pada suatu koloid bermuatan ditambahkan zat elektrolit, maka koloid tersebut akan terkoagulasi. Contohnya, lateks (koloid karet) bila ditambah asam asetat, maka lateks akan menggumpal. Dalam koagulasi ini ada zat elektrolit yang lebih efisien untuk mengoagulasikan koloid bermuatan, yaitu sebagai berikut.
a. Koloid bermuatan positif lebih mudah dikoagulasikan oleh elektrolit yang muatan ion negatifnya lebih besar. Contoh; koloid Fe(OH) 3 adalah koloid bermuatan positif, lebih mudah digumpalkan oleh H 2 SO 4 daripada HC1.
b. Koloid bermuatan negatif lebih mudah dikoagulasikan oleh elektrolit yang muatan ion positifnya lebih besar. Contoh; koloid As 2 S 3 adalah koloid bermuatan negatif, lebih mudah digumpalkan oleh BaCl 2 daripada NaCl
2) Mencampurkan Koloid yang Berbeda Muatan
Bila dua koloid yang berbeda muatan dicampurkan, maka kedua koloid tersebut akan terkoagulasi. Hal itu disebabkan kedua koloid saling menetralkan sehingga terjadi gumpalan. Contoh, campuran koloid Fe(OH) 3 dengan koloid As 2 S 3 .
Selain koagulasi yang disebabkan adanya pelucutan muatan koloid, seperti di atas, ada lagi proses koagulasi dengan cara mekanik, yaitu melakukan pemanasan dan pengadukan terhadap suatu koloid. Contohnya, pembuatan lem kanji, sol kanji dipanaskan sampai membentuk gumpalan yang disebut 1em kanji.
Di bawah ini beberapa contoh koagulasi dalam kehidupan sehari-hari dan dalam industri.
a) Pembentukan delta di muara sungai.
Hal ini terjadi karena koloid tanah liat akan terkoagulasi ketika bercampur dengan elektrolit dalam air laut.
b) Penggumpalan lateks (koloid karet) dengan cara menambahkan asam asetat ke dalam lateks.
c) Sol tanah liat (berbentuk lumpur) dalam air, yang membuat air menjadi keruh, akan menggumpal jika ditambahkan tawas. Ion Al 3+ akan menggumpalkan koloid tanah liat yang bermuatan negatif.
6. Koloid Liofil dan Koloid Liofob
Adanya sifat absorpsi dan zat terdispersi (dengan fase padat) terhadap mediumnya (dengan fase cair), maka kita mengenal dua jenis sol, yaitu sol liofil dan sal liofob. Sol liofil ialah sol yang zat terdispersinya akan menarik dan mengabsorpsi molekul mediumnya. Sol liofob ialah sol yang zat terdispersinya tidak menarik dan tidak mengabsorpsi molekul mediumnya.
Bila sol tersebut menggunakan air sebagai medium, maka kedua jenis koloid tersebut adalah sol hidrofil dan sot hidrofob. Contoh koloid hidrofil adalah kanji, protein, sabun, agar-agar, detergen, dan gelatin. Contoh koloid hidrofob adalah sol-sol sulfida, sol-sol logam, sol belerang, dan sol Fe(OH) 3 .
Sol liofil lebih kental daripada mediumnya dan tidak terkoagulasi jika ditambah sedikit elektrolit. Oleh karena itu, koloid liofil lebih stabil jika dibandingkan dengan koloid liofob. Untuk menggumpalkan koloid liofil diperlukan elektrolit dalam jumlah banyak, sebab selubung molekul-molekul cairan yang berfungsi sebagai pelindung harus dipecahkan terlebih dahulu. Untuk memisahkan mediumnya, pada koloid liofil, dapat kita lakukan dengan cara pengendapan atau penguraian. Akan tetapi, jika zat mediumnya ditambah lagi, maka akan terbentuk koloid liofil lagi. Dengan kata lain, koloid liofil bersifat reversibel . Koloid liofob mempunyai sifat yang berlawanan dengan koloid liofil.
7. Dialisis
Untuk menghilangkan ion-ion pengganggu kestabilan koloid pada proses pembuatan koloid, dilakukan penyaringan ion-ion tersebut dengan menggunakan membran semipermeabel . Proses penghilangan ion-ion pengganggu dengan cara menyaring menggunakan membran/selaput semipermeabel disebut dialisis . Proses dialisis tersebut adalah sebagai berikut. Koloid dimasukkan ke dalam sebuah kantong yang terbuat dari selaput semipermeabel. Selaput ini hanya dapat melewatkan molekul-molekul air dan ion-ion, sedangkan partikel koloid tidak dapat lewat. Jika kantong berisi koloid tersebut dimasukkan ke dalam sebuah tempat berisi air yang mengalir, maka ion-ion pengganggu akan menembus selaput bersama-sama dengan air. Prinsip dialisis ini digunakan dalam proses pencucian darah orang yang ginjalnya (alat dialisis darah dalam tubuh) tidak berfungsi lagi.
8. Koloid Pelindung
Untuk sistem koloid yang kurang stabil, perlu kita tambahkan suatu koloid yang dapat melindungi koloid tersebut agar tidak terkoagulasi. Koloid pelindung ini akan membungkus atau membentuk lapisan di sekeliling partikel koloid yang dilindungi. Koloid pelindung ini sering digunakan pada sistem koloid tinta, cat, es krim, dan sebagainya; agar partikel-partikel koloidnya tidak menggumpal. Koloid pelindung yang berfungsi untuk menstabilkan emulsi disebut emulgator (zat pengemulsi). Contohnya, susu yang merupakan emulsi lemak dalam air, emulgatornya adalah kasein (suatu protein yang dikandung air susu). Sabun dan detergen juga termasuk koloid pehindung dari emulsi antara minyak dengan air.

Pembuatan Sistem Koloid

Jika kita atau sebuah industri akan memproduksi suatu produk berbentuk koloid, bahan bakunya adalah larutan (partikel berukuran kecil) atau suspensi (partikel berukuran besar). Didasarkan pada bahan bakunya, pembuatan koloid dapat dilakukan dengan dua cara, yaitu sebagai berikut.
1. Kondensasi
Kondensasi adalah cara pembuatan koloid dari partikel kecil (larutan) menjadi partikel koloid. Proses kondensasi ini didasarkan atas reaksi kimia; yaitu melalui reaksi redoks, reaksi hidrolisis, dekomposisi rangkap, dan pergantian pelarut.
1) Reaksi Redoks
Contoh
a. Pembuatan sol belerang dari reaksi redoks antara gas H 2 S dengan larutan SO 2 .
Persamaan reaksinya: 2 H 2 S (g) + SO 2 (aq) →2 H 2 O (l) + 3 S (s)
sol belerang
b. Pembuatan sol emas dari larutan AuCl 3 dengan larutan encer formalin (HCHO).
Persamaan reaksinya:
2 AuCl 3(aq) + 3 HCHO (aq) + 3H 2 O (l)  2 Au (s) + 6HCl (aq) + 3 HCOOH (aq)
sol emas
2) Reaksi Hidrolisis
Contoh, pembuatan sol Fe(OH) 3 dengan penguraian garam FeCl 3 Persamaan reaksinya adalah:mengunakan air mendidih.
FeCl 3 (aq) + 3 H 2 O (l)  Fe(OH) 3 (s) + 3 HCl ( aq)
sol Fe(OH) 3
3) Reaksi Dekomposisi Rangkap
Contoh
a) Pembuatan sol As 2 S 3, dibuat dengan mengalirkan gas H 2 S dan asam arsenit (H 3 AsO 3 ) yang encer.
Persamaan reaksinya: 2 H 3 AsO 3 (aq) + 3 H 2 S (g)  As 2 S 3 (s) + 6H 2 O (l)
sol As 2 S 3
b) Pembuatan sol AgCl dari larutan AgNO 3 dengan larutan NaCl encer.
Persamaan reaksinya: AgNO 3 (aq) + NaC1 (aq)  AgCl (s) + NaNO 3 (aq)
Sol AgCl
4) Reaksi Pergantian Pelarut
Contoh, pembuatan sol belerang dari larutan belerang dalam alkohol ditambah dengan air. Persamaan reaksinya:
S (aq) + alkohol + air  S (s) Larutan S sol belerang
2. Dispersi
Dispersi adalah pembuatan partikel koloid dari partikel kasar (suspensi). Pembuatan koloid dengan dispersi meliputi: cara mekanik, peptisasi, busur Bredig, dan ultrasonik.
1) Proses Mekanik
Proses mekanik adalah proses pembuatan koloid melalui penggerusan atau penggilingan (untuk zat padat) serta dengan pengadukan atau pengocokan (untuk zat cair). Setelah diperoleh partikel yang ukurannya sesuai dengan ukuran koloid, kemudian didispersikan ke dalam medium (pendispersinya). Contoh, pembuatan sol belerang.
2) Peptisasi
Peptisasi adalah cara pembuatan koloid dengan menggunakan zat kimia (zat elektrolit) untuk memecah partikel besar (kasar) menjadi partikel koloid. Contoh, proses pencernaan makanan dengan enzim dan pembuatan sol belerang dari endapan nikel sulfida, dengan mengalirkan gas asam sulfida.
3) Busur Bredig
Busur Bredig ialah alat pemecah zat padatan (logam) menjadi partikel koloid dengan menggunakan arus listrik tegangan tinggi. Caranya adalah dengan membuat logam, yang hendak dibuat solnya, menjadi dua kawat yang berfungsi sebagai elektrode yang dicelupkan ke dalam air; kemudian diberi loncatan listrik di antara kedua ujung kawat. Logam sebagian akan meluruh ke dalam air sehingga terbentuk sol logam. Contoh, pembuatan sol logam.
4) Suara Ultrasonik
Cara ini hampir sama dengan cara busur Bredig, yaitu sama-sama untuk pembuatan sol logam. Ka1au busur Bredig menggunakan arus listrik tegangan tinggi, maka cara ultrasonik menggunakan energi bunyi dengan frekuensi sangat tinggi, yaitu di atas 20.000 Hz.

Komponen dan Pengelompokkan Sistem Koloid

1. Sistem Koloid
Apakah sistem koloid itu? Untuk dapat memahami tentang sistem koloid perhatikanlah campuran berikut ini.
a. Gula dicampurkan dengan air
Gula yang dicampur dengan air menghasilkan campuran yang jernih, yaitu air gula. Pada campuran air gula ini zat gula sudah tidak tampak lagi dalam campuran itu. Hal ini berarti, gula bercampur dengan air secara merata (homogen). Campuran seperti ini disebut larutan. Dalam larutan tersebut, air merupakan pelarut dan gula sebagai zat terlarut.
b. Susu dicampurkan dengan air
Susu yang dicampurkan dengan air akan menghasilkan campuran yang keruh. Campuran susu dengan air ini sepintas memberi kesan merupakan campuran homogen. Ternyata, susu setelah dicampur dengan air masih terlihat bisa dibedakan antara susu dengan air. Campuran seperti inilah yang disebut koloid. Campuran koloid merupakan bentuk (fase) peralihan antara campuran homogen menjadi campuran heterogen.
c. Tanah liat dicampurkan dengan air
Hasil campuran tanah liat dengan air adalah suatu campuran yang tidak dapat merata (heterogen). Dengan mudah mata kita dapat membedakan antara tanah liat dengan air, dan hasih campuran tersebut; karena jika campuran tersebut didiamkan, maka tanah liat akan terpisah dari air. Campuran seperti inilah yang disebut suspensi.
Untuk lebih jelas melihat perbedaan antara larutan, koloid, dan suspensi perhatikanlah Tabel berikut.
Tabel 1. Perbedaan Larutan, Koloid, dan Suspensi
NO
Larutan
Koloid
Suspensi
1.
1 fase
2 fase
2 fase
2.
jernih
keruh
keruh
3.
homogen
antara homogen dan heterogen
heterogen
4.
diameter partikel
< 1 nm
diameter partikel:
1 nm < d < 100 nm
diameter partikel:
> 100 nm
5.
tidak dapat disaring
tidak dapat disaring dengan penyaring biasa
dapat disaring
6.
tidak memisah jika didiamkan
tidak memisah jika didiamkan
memisah jika didiamkan
7.
Contoh: larutan gula, larutan garam, larutan alkohol, larutan cuka, larutan gas dalam udara, larutan zat yang digunakan dalam laboratorium dan industri
Contoh: susu, kanji, cat, asap, kabut, buih sabun, dan busa
Contoh: campuran pasir dengan air, air dengan kopi, minyak dengan air, tanah liat dengan air
Dari beberapa keterangan di atas dapat disimpulkan bahwa koloid adalah larutan yang berada di antara larutan dan suspensi.
2. Jenis-Jenis Koloid
Di atas telah kita bahas perbedaan antara larutan, koloid, dan suspensi. Sekarang kita akan mempelajari jenis-jenis koloid. Kita telah melihat bahwa sistem koloid terdiri atas dua fase (bentuk). Hal itu yang disebut komponen-komponen koloid .
1. Fase zat terdispersi, yaitu zat yang fasenya berubah; kecuali jika zat yang dicampur mempunyai fase yang sama.
2. Fase zat pendispersi (fase medium), yaitu zat yang mempunyai fase yang tetap pada sistem koloidnya.
Jika dua zat yang fasenya berbeda atau sama membentuk koloid, maka diperoleh suatu koloid yang mempunyai fase yang sama dengan fase salah satu zat yang dicampurkan. Berdasarkan pengertian ini, maka suatu koloid dapat ditentukan fase pendispersi dan fase terdispersinya .
Berdasarkan fase zat terdispersi, sistem koloid terbagi atas 3 bagian besar, yaitu sebagai berikut.
a. Koloid sol
Koloid sol adalah koloid dengan zat terdispersinya berfase padat.
b. Emulsi
Emulsi adalah koloid dengan zat terdispersinya berfase cair.
c. Buih
Buih adalah koloid dengan zat terdispersinya berfase gas.
Berdasarkan fase mediumnya; sol, emulsi, dan buih masih terbagi atas beberapa jenis, yaitu sebagai berikut.
a. Koloid Sol
Koloid sol dibagi menjadi 3 jenis, yaitu sebagai berikut.
1) Sol padat (padat-padat)
Sol padat adalah jenis koloid dengan zat fase padat terdispersi dalam zat fase padat. Contoh: logam paduan, kaca berwarna, intan hitam, dan baja.
2) Sol cair (padat-cair)
Sol cair atau disebut sol saja adalah jenis koloid dengan zat fase padat terdispersi dalam zat fase cair. Artinya, zat terdispersi berfase padat dan zat pendispersi (medium) berfase cair. Contoh: cat, tinta, dan kanji.
3) Sol gas (padat-gas)
Sol gas (aerosol padat) adalah koloid dengan zat fase padat terdispersi dalam zat fase gas. Artinya, zat terdispersi berfase padat dan zat pendispersi (medium) berfase gas. Contoh: asap dan debu.
b. Koloid Emulsi
Koloid emulsi dibagi menjadi 3 jenis, yaitu sebagai berikut.
1) Emulsi padat (cair-padat)
Emulsi padat (gel) adalah koloid dengan zat fase cair terdispersi dalam zat fase padat. Artinya, zat terdispersi berfase cair dan zat pendispersi (medium) berfase padat. Contoh: mentega, keju, jeli, dan mutiara.
2) Emulsi cair (cair-cair)
Emulsi cair (emulsi) adalah koloid dengan zat fase cair terdispersi dalam zat fase cair. Artinya, zat terdispersi berfase cair dan zat pendispersi (medium) berfase cair. Contoh: susu, minyak ikan, dan santan kelapa.
3) Emulsi gas (cair-gas)
Emulsi gas (aerosol cair) adalah koloid dengan zat fase cair terdispersi dalam zat fase gas. Artinya, zat terdispersi berfase cair dan zat pendispersi (medium) berfase gas. Contoh: insektisida (semprot), kabut, dan hair spray .
c. Koloid Buih
Koloid buih dibedakan menjadi 2 jenis, yaitu sebagai berikut.
1) Buih padat (gas-padat)
Buih padat adalah koloid dengan zat fase gas terdispersi dalam zat fase padat. Artinya, zat terdispersi berfase gas dan zat pendispersi (medium) berfase padat. Contoh: busa pada jok mobil dan batu apung.
2) Buih cair (gas-cair)
Buih cair (buih) adalah koloid dengan zat fase gas terdispersi dalam zat fase cair. Artinya, zat terdispersi berfase gas dan zat pendispersi (medium) berfase cair. Contoh: buih sabun, buih soda, dan krim kocok.
Untuk zat berfase gas terdispersi dalam zat berfase gas bukan merupakan koloid, melainkan merupakan larutan. Contohnya, larutan-larutan dalam udara bersih.
3. Koloid dalam Industri
Koloid merupakan satu-satunya bentuk campuran bukan larutan yang komposisinya (susunannya) merata dan stabil (tidak memisah jika didiamkan). Pada umumnya, produk industri untuk kebutuhan manusia dibuat dalam bentuk koloid. Koloid sangat diperlukan dalam industri cat, keramik, plastik, tekstil, kertas, karet, lem, semen, tinta, kulit, film foto, bumbu selada, mentega, keju, makanan, kosmetika, pelumas, sabun, obat semprot insektisida, detergen, selai, gel, perekat, dan sejumlah besar produk-produk industri lainnya

Model Atom Modern

Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.
Persamaan Schrodinger
x,y dan z
Y
m
Ñ’ 

E
V
= Posisi dalam tiga dimensi
= Fungsi gelombang
= massa
= h/2p dimana h = konstanta plank dan p = 3,14
= Energi total
= Energi potensial
Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada gambar berikut ini.
 
Awan elektron disekitar inti menunjukan tempat kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron. Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital. Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.
CIRI KHAS MODEL ATOM MEKANIKA GELOMBANG
1. Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
2. Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya.(Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
3. Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi boleh jadi merupakan peluang terbesar ditemukannya elektron
PERCOBAAN CHADWICK
KELEMAHAN MODEL ATOM MODERN
Persamaan gelombang Schrodinger hanya dapat diterapkan secara eksak untuk partikel dalam kotak dan atom dengan elektron tunggal
Model Atom Mekanika Kuantum-Model Atom Modern Yang Dipakai Sampai Saat Ini
Salah satu kelemahan model atom Bohr hanya bisa dipakai untuk menjelaskan model atom hydrogen dan atom atau ion yang memiliki konfigurasi elektron seperti atom hydrogen, dan tidak bisa menjelaskan untuk atom yang memiliki banyak elektron.
Werner heinsberg (1901-1976), Louis de Broglie (1892-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya model atom modern atau yang disebut sebagai model atom mekanika kuantum .
Pernyataan de Broglie yang menyatakan bahwa partikel dapat bersifat seperti gelombang telah menginspirasi Schrödinger untuk menyusun model atomnya dengan memperhatikan sifat elektron bukan hanya sebagai partikel tapi juga sebagai gelombang, artinya dia menggunakan dualisme sifat elektron.
Menurut Schrödinger elektron yang terikat pada inti atom dapat dianggap memiliki sifat sama seperti “standing wave”, anda bisa membayangkan gelombang standing wave ini seperti senar pada gitar (lihat gambar). Ciri standing wave ini ujung-ujungnya harus memiliki simpul sehingga ½ gelombang yang dihasilkan berjumlah bilangan bulat.
Hal yang sama dapat diterapkan apabila kita menganggap elektron dalam atom hydrogen sebagai “standing wave”. Hanya orbit dengan dengan jumlah ½ gelombang tertentu saja yang diijinkan, orbit dengan jumlah ½ gelombang yang bukan merupakan bilangan bulat tidak diijinkam. Hal inilah penjelasan yang rasional mengapa energi dalam atom hydrogen terkuantisasi. (lihat gambar)
Schrödinger kemudian mengajukan persamaan yang kemudian dikenal dengan nama “persamaan gelombang Schrödinger” yaitu :
H? = E?
? disebut sebagai fungsi gelombang, H adalah satu set intruksi persamaan matematika yang disebut sebagai operator, dan E menunjukan total energi dari atom. Penyelesaian persamaan ini menghasilkan berbagai bentuk penyelesaian dimana setiap penyelesain ini melibatkan fungsi gelombang ? yang dikarakteristikkan oleh sejumlah nilai E. Fungsi gelombang ? yang spesisfik dari penyelesaian persamaan gelombang Schrödinger disebut sebagai “orbital”
Apakah orbital itu? Orbital adalah daerah kebolehjadian kita menemukan elektron dalam suatu atom atau bisa dikatakan daerah dimana kemungkinan besar kita dapat menemukan elektron dalam suatu atom.
Bedakan dengan istilah orbit yang dipakai di model atom Bohr. Orbit berupa lintasan dimana kita bisa tahu lintasan dimana elektron mengelilingi inti, tapi pada orbital kita tidak tahu bagaimana bentuk lintasan elektron yang sedang mengelilingi inti. Yang dapat kita ketahui adalah dibagian mana kemungkinan besar kita dapat menemukan elektron dalam atom.
Werner Heisenberg menjelaskan secara gamblang tentang sifat alami dari orbital, analisis matematika yang dihasilkannya menyatakan bahwa kita tidak bisa secara pasti menentukan posisi serta momentum suatu partikel pada kisaran waktu tertentu. Secara matematis azas ketidakpastian Heisenberg ditulis sebagai berikut:
?x . ?(mv) ? h/4?
?x adalah ketidakpastian menentukan posisi dan ?(mv) adalah ketidakpastian momentum dan h adalah konstanta Plank. Arti persamaan diatas adalah semakin akurat kita menentukan posisi suatu partikel maka semakin tidak akurat nilai momentum yang kita dapatkan, dan sebaliknya.
Pembatasan ini sangat penting bila kita memmpelajari partikel yang sangat kecil seperti elektron, oleh sebab itulah kita tidak bisa menentukan secara pasti posisi elektron yang sedang mengelilingi inti atom seperti yang ditunjukan oleh model atom Bohr, dimana elektron bergerak dalam orbit yang berbentuk lingkaran. Disinilah mulai diterimanya model atom mekanika kuantum yang diajukan oleh Schrödinger.
Sesuai dengan azaz Heisenberg ini maka fungsi gelombang tidak dapat menjelaskan secara detail pergerakan elektron dalam atom, kecuali fungsi gelombang kuadrat (?2) yang dapat diartikan sebagai probabilitas distribusi elektron dalam orbital. Hal ini bisa dipakai unutk menggambarkan bentuk orbital dalam bentuk distribusi elektron, atau dikenal sebagai peta densitas.

 


Model Atom Modern
Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.
Persamaan Schrodinger
x,y dan z
Y
m
Ñ’
E
V
= Posisi dalam tiga dimensi
= Fungsi gelombang
= massa
= h/2p dimana h = konstanta plank dan p = 3,14
= Energi total
= Energi potensial
Model atom dengan orbital lintasan elektron ini disebut model atom modern atau model atom mekanika kuantum yang berlaku sampai saat ini.

 Model Atom Bohr
Pada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:
1. Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
2. Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
3. Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, Î” E = hv .
4. Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut . Besarnya momentum sudut merupakan kelipatan darih/2∏ atau n h/2∏, dengan n adalah bilangan bulat dan h tetapan planck.
Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.
Percobaan Bohr
KELEBIHAN DAN KELEMAHAN
Kelebihan 
atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat berpindahnya elektron.Kelemahan 
model atom ini adalah tidak dapat menjelaskan efek Zeeman dan efek Strack


Model Atom Rutherford
Rutherford bersama dua orang muridnya ( Hans Geigerdan Erners Masreden )melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:

1. Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
2. Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
3. Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.
Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan Model Atom Rutherford yang menyatakan bahwa Atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif . Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak.
Model atom Rutherford dapat digambarkan sebagai beriukut:
Percobaan Rutherford

KELEMAHAN MODEL ATOM RUTHERFORD
Kelebihan 
Membuat hipotesa bahwa atom tersusun dari inti atom dan elektron yang mengelilingi inti

Kelemahan 
Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama - kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam inti Ambilah seutas tali dan salah satu ujungnya Anda ikatkan sepotong kayu sedangkan ujung yang lain Anda pegang. Putarkan tali tersebut di atas kepala Anda. Apa yang terjadi? Benar. Lama kelamaan putarannya akan pelan dan akan mengenai kepala Anda karena putarannya lemah dan Anda pegal memegang tali tersebut. Karena Rutherford adalah telah dikenalkan lintasan/kedudukan elektron yang nanti disebut dengan kulit.


MODEL ATOM
Pengetahuan para ilmuwan tentang atom bukan berdasarkan pengamatan langsung terhadap atom per atom, sebab ato terlalu kecil untuk dapat diamati dan diukur sacara langsung. Diameter atom dinyakini berkisar antara 30 sampai 150 pm. Dengan alat pembesar apapun kita belum dapat melihat atom, tetapi gejala yang ditimbulkan oleh atom itu dapat diukur seperti jejak atom, nyala, difraksi, dan lain-lain. Teori-teori atom yang ada sekarang hanya merupakan model yang dibangun oleh para ilmuwan sebagai kesimpulan dari hasil berbagai kajian teoritis dan gejala empiris dengan berbagai pendekatan dan metode ilmiah. Itulah sebabnya terdapat beberapa model atom yang telah dikembangkan dan dipublikasikan menurut tenemuan-tenemuan yang secara sinergetis saling mendukung atau bahkan menolak usulan model atom sebelumnya. Sampai saat ini, teori atom yang paling muktahir adalah berdasarkan teori mekanika kuantum atau mekanika gelombang dengan berbagai asumsi dan teorema.
PERKEMBANGAN MODEL ATOM
Definisi awal tentang konsep atom berlangsung > 2000 thn. Dulu atom dianggap sebagai bola keras sedangkan sekarang atom dianggap sebagai awan materi yang kompleks. Dibawah ini akan dipaparkan konsep Yunani tentang atom:
Pandangan filosof Yunani
Atom adalah Konsep kemampuan untuk dipecah yg tiada berakhir

Leucippus (Abad ke-5 SM)
Ada batas kemampuan untuk dibagi, sehingga harus ada bagian yang tidak dapat dibagi lagi

Democritus (380-470 SM)
A: tidak, tomos: dibagi. Jadi atom adalah partikel yang tidak dapat dibagi lagi. Atom setiap unsur memilki bentuk & ukuran yang berbeda.

Lucretius 
Sifat atom suatu bahan dalam “ On the Nature of Things ”

Perkembangan Model Atom Secara Ilmiah
Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilanjutkan oleh Thomson (1897), Rutherford (1911) dan disempurnakan oleh Bohr (1914). Setelah model atom Bohr, Heisenberg mengajukan model atom yang lebih dikenal dengan model atom mekanika gelombang atau model atom modern.
Hasil eksperimen yang memperkuat konsep atom ini menghasilkan gambaran mengenai susunan partikel-partikel tersebut di dalam atom. Gambaran ini berfungsi untuk memudahkan dalam memahami sifat-sifat kimia suatu atom. Gambaran susunan partikel-partikel dasar dalam atom disebut model atom.


Model Atom Thomson
Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan selanjutnya disebut elektron .
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. Yang menyatakan bahwa:

"Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron"
Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal.
Dengan Percobaan Sinar Katode Thomson mengemukakan tentang elektron, sehingga disebut sebagai penemu elektron
Sinar dihasilkan dari katoda
didekatkan dengan magnet sinar dibelokkan
Dengan magnet sinar dibelokkan
KELEBIHAN DAN KELEMAHAN MODEL ATOM THOMSON
Kelebihan
Membuktikan adanya partikel lain yang bermuatan negatif dalam atom. Berarti atom bukan merupakan bagian terkecil dari suatu unsur.

Kelemahan
Model Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.


Model Atom Dalton
Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa "Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi". Sedangkan Prouts menyatakan bahwa "Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap". Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.
Model Atom Dalton seperti bola pejal
PERCOBAAN LAVOSIER
Mula-mula tinggi cairan merkuri dalam wadah yang berisi udara adalah A, tetapi setelah beberapa hari merkuri naik ke B dan ketinggian ini tetap. Beda tinggi A dan B menyatakan volume udara yang digunakan oleh merkuri dalam pembentukan bubuk merah (merkuri oksida). Untuk menguji fakta ini, Lavoisier mengumpulkan merkuri oksida, kemudian dipanaskan lagi. Bubuk merah ini akan terurai menjadi cairan merkuri dan sejumlah volume gas (oksigen) yang jumlahnya sama dengan udara yang dibutuhkan dalam percobaan pertama
Percobaan Joseph Pruost
Pada tahun 1799 Proust menemukan bahwa senyawa tembaga karbonat baik yang dihasilkan
melalui sintesis di laboratorium maupun yang diperoleh di alam memiliki susunan yang tetap.

Percobaan
ke-
Sebelum pemanasan (g Mg)
Setelah pemanasan (g MgO)
Perbandingan Mg/MgO
1
0,62
1,02
0,62/1,02 = 0,61
2
0,48
0,79
0,48/0,79 = 0,60
3
0,36
0,60
0,36/0,60 = 0,60
KELEMAHAN MODEL ATOM DALTON
Kelebihan
Mulai membangkitkan minat terhadap penelitian mengenai model atom

Kelemahan 
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. Bagaimana mungkin bola pejal dapat menghantarkan arus listrik? padahal listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.